Раздел 1. ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ

1.1. Представление информации

«Информация: формы и свойства»

Информация — сведения об окружающем нас мире, событиях, явлениях, воспринимаемые, хранимые и передающиеся человеком.

В обыденной жизни под информацией понимают сведения о предметах, явлениях, фактах, действиях, процессах, передаваемые людьми устным, письменным или другим образом. Сведения о внешнем мире человек воспринимает с помощью органов чувств (зрения, слуха, вкуса, обоняния, осязания). Таким образом, информация— это знания, сведения, которые человек получает из окружающего мира с помощью органов чувств. Такой подход к понятию можно назвать субъективным.

С позиции кибернетики (наука о связи и управлении в машинах и животных, а также в обществе и человеческих существах) информация— это совокупность сигналов, воздействий или сведений, которые система или объект воспринимает извне (входная информ.), выдает в окружающую среду (выходная информ.) или хранит в себе (внутренняя информ.).

В *теории информации* (математическая теория систем связи и передачи информации) под информацией понимается не каждое сообщение, а лишь такое, которое содержит неизвестные для получателя факты и дополняет его представление об объекте или процессе.

В компьютерной обработке данных под информацией понимают последовательность символьных обозначений (букв, цифр, закодированных графических образов и звуков и т. п.), несущую смысловую нагрузку и представленную в доступном компьютеру виде.

Информатика — наука, изучающая структуру и общие свойства информации, а также методы ее представления, накопления, хранения, поиска, обработки, передачи и воспроизведения с помощью технических средств

Формы (виды) представления информации:

1) по способу восприятия

- визуальная
- аудиальная
- тактильная
- обонятельная

2) по форме представления

- звуковая
- текстовая
- числовая

- графическая
- сигнальная

3) по назначению

- массовая
- специализированная
- личная

Классификация информации

По способу восприятия:

- визуальная воспринимаемая органами зрения;
- аудиальная воспринимаемая органами слуха;
- тактильная воспринимаемая тактильными рецепторами;
- обонятельная воспринимаемая обонятельными рецепторами;
- вкусовая воспринимаемая вкусовыми рецепторами.

По форме представления:

- текстовая передаваемая в виде символов букв, отображающих человеческую речь;
- числовая в виде цифр и знаков, обозначающих математические действия;
- графическая в виде изображений, графиков;
- звуковая устная или в виде записи передача аудиальным путем;
- видео способ сохранения «живых» картин окружающего мира, появившийся с изобретением кино.

По предназначению:

- массовая содержит сведения и понятия, понятные большей части потребителей;
- специальная содержит специфический набор понятий, необходимых и понятных в рамках узкой группы потребителей;
- личная набор сведений о какой-либо личности.

Свойства информации:

- полнота
- актуальность
- понятность
- достоверность
- полезность

Понятность	Этим свойством обладает только та информация, которая выражена в форме, понятной тем, кому она предназначена, в противном случае информация становится бесполезной.
Полезность (ценность)	Это комплексный показатель качества информации. Зависит от того, какие задачи можно решить, используя эту информацию. Однако ценность информации — это понятие субъективное, т. к. информация, полезная для одного человека, может быть совершенно бесполезной для другого.
Достоверность	Информация достоверна, если она содержит сведения, отражающие истинное положение дел. Часто из-за искажений информации это свойство утрачивается. Кроме того, достоверная информация со временем может стать недостоверной, так как она обладает свойством устаревать, то есть перестает отражать истинное положение дел.
Актуальность	Она определяется степенью сохранения ценности информации в момент ее использования. Актуальную информацию очень важно иметь при работе в изменяющихся условиях, т. к. в таком случае только вовремя полученная (или обновленная) информация может принести пользу (примером может служить прогноз погоды).
Полнота и точность	Полнота информации означает, что она содержит минимальный, но достаточный для принятия правильного решения состав. Нарушение полноты информации сдерживает принятие решений и может повлечь ошибки.

«Представление информации»

Коды ОГЭ: **1.1.1** Информация. Язык как способ представления и передачи информации: естественные и формальные языки; **1.1.2** Формализация описания реальных объектов и процессов, моделирование объектов и процессов.

Языки представления информации

Информацию можно представлять с помощью знаков. Знаковые системы — это наборы знаков определенного типа. Примерами знаковых систем являются разговорные языки, системы счисления, нотная грамота, математические формулы.

Каждая знаковая система строится на основе определенного *алфавита* — некоторого конечного упорядоченного набора знаков (символов или сигналов). Полное число символов алфавита называют мощностью алфавита. В знаковую систему включаются также и правила выполнения операций над знаками алфавита.

Язык — определенная знаковая система представления информации. Существуют естественные и формальные языки.

К естественным языкам относятся разговорные языки в устной и письменной форме, язык мимики и жестов и др. Разговорные языки начали формироваться еще в древнейшие времена для обмена информацией между людьми. На сегодняшний день существует несколько тысяч естественных языков — например, русский, английский, арабский, китайский и др.

В устной речи в качестве знаков языка используются различные звуки (фонемы). В основе письменной речи лежит алфавит — набор знаков (букв или

иероглифов), которые человек различает по их начертанию. Алфавит русского языка называется кириллицей и содержит 33 знака, английский язык использует латиницу и содержит 26 знаков.

Из символов алфавита по правилам грамматики составляются слова, а из них по правилам синтаксиса — предложения.

Формальные языки — это специальные языки для различных областей человеческой деятельности. Они имеют жестко фиксированный алфавит и строгие правила грамматики и синтаксиса. Примерами формальных языков служат языки программирования, системы счисления, алгебра и другие языки математики, нотная запись, язык дорожных знаков.

Например, десятеричная система счисления — это знаковая система, в качестве алфавита которой используются арабские цифры, а выполнение арифметических операций над ними задается строгими правилами. Азбука Морзе представляет собой алфавит из двух знаков (точки и тире) и правила составления сигналов из этих знаков.

Моделирование объектов и процессов

Модель — искусственно созданный объект, который замещает исследуемый объект и отображает в более простом, уменьшенном виде структуру, свойства, взаимосвязи и отношения между его элементами.

Для каждой модели существует ее прототип, или *оригинал* — тот объект, который она замещает. Процесс создания модели называется моделированием. В процессе моделирования выделяются главные, наиболее существенные, свойства объекта.

Моделирование ставит целью понять сущность объекта, научиться им управлять, прогнозировать его состояние или действия. Моделировать можно существующие предметы, явления, процессы, а также не существующие: объекты, которые планируется разработать, явления, которые могут и не произойти, и т. д.

По назначению различают модели научно-технические, исследовательские, обучающие, имитационные и др.

Научно-технические модели позволяют исследовать явления и процессы в лабораторных, а не в реальных условиях. Исследовательские модели дают возможность изучить потенциальные свойства или характеристики сооружений и механизмов до их воплощения в жизнь, чтобы избежать возможных ошибок. Обучающие модели и тренажеры используются для изучения или демонстрации свойств каких-либо объектов, процессов или явлений. Имитационные модели позволяют заменить (сымитировать) исследуемый объект другим со схожими свойствами.

Для исследования одного и того же объекта могут использоваться разные модели. Для исследования разных объектов может использоваться одна и та же модель.

По способу реализации модели подразделяют на материальные и информационные.

Материальные модели имеют реальное воплощение: макеты, копии, образцы. Информационные модели представляют совокупность информации, характеризующей свойства и состояние объекта и его взаимосвязи с внешним миром. Примерами информационных моделей служат качественные описания, схемы и чертежи, таблицы и рисунки, химические формулы и географические карты, диаграммы и планы и т. д.

Информационные модели делятся на описательные (созданные на естественном языке) и знаковые (использующие формальный язык). Процесс построения информационных моделей с помощью формальных языков называют формализацией.

Этапы разработки формальной информационной модели:

- 1. Анализ исследуемого объекта и его свойств, выделение существенных свойств с точки зрения моделирования.
- 2. Выбор формы представления модели.
- 3. Формализация.
- 4. Анализ модели на непротиворечивость.
- 5. Анализ адекватности (соответствия) модели целям и задачам моделирования.

Математические модели — информационные модели в виде совокупности математических формул, отражающих взаимозависимости между параметрами объекта.

Расчеты для многих математических моделей проводят с помощью компьютеров. С помощью специальных программ исследуют объекты, которые невозможно, опасно либо дорого исследовать напрямую; процессы, которые происходят слишком медленно (или слишком быстро); явления, которые ранее не происходили, и т. д.

«Дискретная форма представления информации»

Код ОГЭ: 1.1.3 Дискретная форма представления информации. Единицы измерения количества информации

Информация может быть представлена в **аналоговой** или дискретной форме. Величина в аналоговой форме может принимать бесконечное множество значений. Примерами аналогового представления информации могут служить звук скрипки, картина художника, показатели температуры воздуха, уровня воды в реке.

Величина в дискретной форме может принимать только конечное множество значений. Примеры дискретного представления информации: цифровые показания часов или спидометра, текст в книге, изображение на экране монитора.

Величину в аналоговой форме представления информации можно преобразовать в величину в дискретной форме. Этот процесс называется дискретизацией.

Представление информации в компьютере дискретно. В процессах хранения, обработки и передачи информации в компьютере используется двоичная знаковая система. Ее алфавит состоит всего из двух знаков {0, 1}. Для удобства использования такого алфавита договорились называть любой из его знаков бит (от англ. bit — binary digit — двоичный знак). Поскольку один бит может принимать только одно из двух значений, то им выражают одно из двух взаимоисключающих понятий: да/нет, истина/ложь, включено/выключено. Способ представления информации с помощью кода из двух знаков оказался наиболее значимым для развития техники. Двоичные числа удобно хранить, обрабатывать и передавать с помощью электронных устройств. Основным носителем информации в них являются элементы, которые могут находиться в одном из двух состояний: включено/выключено, высокий/низкий уровень напряжения или тока, наличие/отсутствие намагниченности материалов. Условно одно состояние обозначают через 1, а другое через 0. Каждый такой элемент способен хранить один двоичный разряд, или бит информации.

Любое информационное сообщение представляется последовательностью нулей и единиц (цифрового кода). Этот метод представления информации называется двоичным кодированием. Таким образом, двоичный код является универсальным средством кодирования информации. Благодаря двоичному кодированию все действия по обработке сообщений компьютером сводятся к совокупности простых действий над 0 и 1.

Единицы измерения количества информации

Бит — единица измерения количества информации, равная одному разряду в двоичной системе счисления. Это наименьшая единица измерения информации.

Основной единицей хранения и обработки цифровой информации принят *байт*. Байт (англ. byte) — совокупность восьми двоичных разрядов (битов).

Соответственно, с помощью одного байта можно получить 256 (= 2^8) двоичных значений (от 00000000 до 11111111). В современных персональных компьютерах байт является наименьшей совокупностью битов, которую компьютер обрабатывает одномоментно.

На практике применяют более емкие, чем байт, единицы измерения объема сообщений и емкости носителей — килобайты, мегабайты, гигабайты, терабайты. Множителем при переходе к более емкой единице измерения выступает число $1024 \ (= 2^{10})$.

Единицы измерения емкости носителей

Название	Условное обозначение	Соотношение с другими единицам					
бит	бит						
килобит	Кбит	210 бит = 1024 бит					
мегабит	Мбит	2 ²⁰ бит = 1024 Кбит					
гигабит	Гбит	2^{30} бит = 1024 Мбит					
терабит	Тбит 2^{40} бит = 1024 Гб						
байт	байт (Б)	8 бит					
килобайт	Кбайт (Кб)	2^{10} байт = 1024 байт					
мегабайт	Мбайт (Мб)	2^{20} байт = 1024 Кбайт					
гигабайт	Гбайт (Гб)	2^{30} байт = 1024 Мбайт					
терабайт	Тбайт (Тб)	2 ⁴⁰ байт = 1024 Гбайт					

Системы счисления

Система счисления — совокупность обозначений, приемов и правил для записи чисел цифровыми знаками. В зависимости от способов изображения чисел цифрами системы счисления делятся на непозиционные и позиционные. Непозиционные системы счисления — такие, в которых количественное значение каждой цифры не зависит от занимаемой ею позиции в изображении числа.

Примером может служить египетская система счисления — в ней иероглифы (цифры), составляющие число, можно записывать сверху вниз, справа налево или вперемежку. Значение числа равно сумме значений цифр в его записи.

Переходной от непозиционных систем к позиционным служит римская система счисления. В ней позиция некоторых цифр уже меняет значение числа: например, в числе IX единицу нужно отнять от десяти, а в числе XI единицу нужно прибавить к десяти. Однако количественное значение самих цифр X и I от их позиции не зависит.

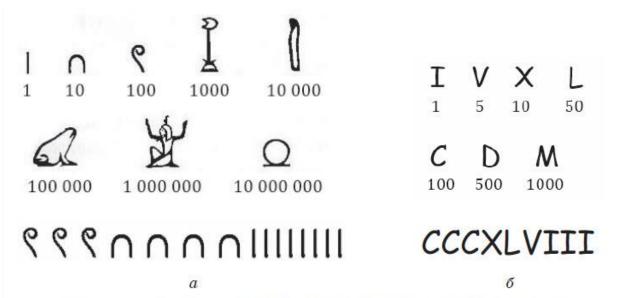


Рис. 1.1. Алфавит и изображение числа 348 в египетской (а) и римской (б) системах счисления

В римской системе цифры записываются слева направо в порядке убывания, и тогда их значения складываются. Если слева записана меньшая цифра, а справа — большая, то их значения вычитаются. Нежелательно записывать более трех одинаковых цифр подряд.

Например, для представления числа 348 в римской системе счисления надо выписать сначала число сотен, затем десятков и единиц: 300 — ССС, 40 — XL, 8 — VIII. Затем соединить эти записи: СССХLVIII. Аналогично для числа 1977: 1 тысяча — M, 900 — СМ, 70 — LXX, 7 — VII. Результат: MCMLXXVII.

В непозиционных системах очень трудно производить многие действия над числами, особенно умножение и деление, слишком громоздка запись для больших чисел. Поэтому широкое распространение получили позиционные системы счисления.

Позиционные системы счисления — такие, в которых количественное значение каждой цифры зависит от ее позиции в числе. Количество знаков (цифр), используемых для изображения числа, называется основанием системы счисления (или мощностью алфавита). Систему с основанием 10 называют десятичной, с основанием 2 — двоичной, с основанием 16 — шестнадцатеричной, в общем случае: с основанием k — k-ичной.

Место цифры в числе называется **разрядом**, а количество цифр в числе — его *разрядностью*. Разряды целого числа нумеруются справа налево начиная с 0. Дробные разряды нумеруют слева направо начиная с -1.

Примером позиционной системы счисления является используемая нами арабская десятичная система счисления. Иногда ее называют индо-арабской, поскольку она была придумана в Индии, а стала известна в Европе из арабских трактатов. Алфавит этой системы составляют 10 цифр — от 0 до 9. Каждая цифра в числе при перемещении справа налево в следующий разряд

увеличивает свое значение в 10 раз. Чтобы определить значение числа, надо сложить произведения каждой его цифры на 10 в степени, равной разряду этого числа.

$$348 = 3 \cdot 10^{2} + 4 \cdot 10^{1} + 8 \cdot 10^{0}$$
$$-348.17 = -(3 \cdot 10^{2} + 4 \cdot 10^{1} + 8 \cdot 10^{0} + 1 \cdot 10^{-1} + 7 \cdot 10^{-2})$$

Системы счисления могут иметь различные основания. Чтобы различать, в какой системе счисления записано число, принято указывать ее основание в виде нижнего индекса справа от числа. Сам индекс всегда представляется в десятичной системе. Для самой десятичной системы индекс указывают только тогда, когда используется какая—либо другая система:

316 — число в десятичной системе счисления, 316₈ — число в восьмеричной системе счисления.

Свойства записи чисел в позиционной системе счисления:

- 1. Для записи чисел в позиционной системе счисления с основанием k требуется k знаков (алфавит системы состоит из k цифр или букв).
- 2. Основание системы счисления, записанное в ней, всегда имеет вид 10 (читается «один ноль»).
- 3. С помощью п разрядов в позиционной системе счисления с основанием k могут быть записаны k^n чисел (от 0 до k^{n-1}).

Если основание системы k больше 10, то цифры старше 10 при записи обозначают прописными буквами латинского алфавита: A, B, ..., Z. При этом цифре 10 соответствует знак A, цифре 11 — знак B и т. д.

Цифры шестнадцатеричной системы счисления

16-ричная система	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
Соответствие в десятичной системе	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Информация в компьютере представлена в цифровой двоичной форме. В целях экономичного отображения двоичную информацию можно представлять в шестнадцатеричном виде. В программировании часто используется восьмеричная запись чисел.

Характеристика некоторых систем счисления

Основание системы счисления	Название системы счисления	Алфавит системы счисления 0 1					
2	двоичная						
3	троичная	0 1 2					
8	восьмеричная	0 1 2 3 4 5 6 7					
10	десятичная	0123456789					
16	шестнадцатеричная	0 1 2 3 4 5 6 7 8 9 A B C D E F					

В общем виде число в позиционной системе счисления может быть представлено как последовательность символов алфавита (цифр), обозначенных через a_1 , a_2 , a_3 и т. д. Для числа A с количеством целых разрядов n и количеством дробных разрядов m запись имеет вид:

$$A = a_{n-1} a_{n-2} \dots a_2 a_1 a_0 a_{-1} a_{-2} \dots a_{-m}$$

Такая запись называется **свернутой записью числа**. Эту форму записи мы используем в повседневной жизни, поэтому ее называют также естественной. Представление числа в виде многочлена называют **развернутой записью числа**:

 $\mathbf{A} = \mathbf{a_{n-1}} \cdot \mathbf{k^{n-1}} + \mathbf{a_{n-2}} \cdot \mathbf{k^{n-2}} + \dots + \mathbf{a_1} \cdot \mathbf{k^1} + \mathbf{a_0} \cdot \mathbf{k^0} + \mathbf{a_1} \cdot \mathbf{k^1} + \dots \mathbf{a_{-m}} \cdot \mathbf{k^{-m}}$. Развернутая запись числа задает правило для вычисления числа по его цифрам в \mathbf{k} —ичной системе счисления. Для уменьшения количества вычислений пользуются *схемой Горнера*, которая получается путем поочередного выноса основания системы \mathbf{k} за скобки:

$$A = (...((a_{n-1} \cdot k + a_{n-2}) \cdot k + a_{n-3}) \cdot k + ... + a_1) \cdot k + a_0.$$